Методы сшивки решений
Если поведение решения вблизи особых точек все же представляет интерес, то возникает необходимость локального уточнения расчетной модели. Типичным примером может служить действие сосредоточенной силы на пластинку, когда в малой окрестности этой силы напряженное состояние является существенно пространственным, а обычные гипотезы теории пластин не выполняются. Возможен переход к трехмерной модели, однако полная замена пластинчатых конечных элементов трехмерными приведет к резкому возрастанию размеров задачи. Следовательно, необходимо комбинирование двухмерной идеализации объекта с уточнениями, выполненными в трех измерениях. Проще всего сделать это методом фрагментации, используя глобально-локальный анализ. Такой анализ, вообще говоря, можно выполнить в трех формах [30]: 1 ? по методу сил, когда на выделенный фрагмент передаются усилия от остальной системы, найденные из глобального расчета; 2 ? по методу перемещений, когда граница фрагмента смещается таким же образом, как в глобальном расчете; и 3 ? смешанным методом. Мы приведем выкладки для первого из указанных подходов.
В упомянутом и других подобных случаях достаточно естественной представляется следующая двухэтапная процедура:
а) пренебрегая локальными особенностями конструктивного решения строится загрубленная расчетная схема первого приближения, которая дает возможность оценить напряженно-деформированное состояние объекта в целом, и выполняется ее расчет;
б) выделяется фрагмент конструкции, содержащий интересующую нас особенность. К этому фрагменту прикладываются реакции, полученные при отбрасывании остальной части конструкции, и силы, непосредственно приложенные к выделенному фрагменту. Фрагмент рассчитывается с использованием более детальной расчетной схемы и из полученного таким образом решения используется та часть, которая относится к точкам, расположенным на некотором удалении от границ фрагмента.
Такой подход согласуется с практикой выбора серии расчетных схем для анализа различных особенностей поведения конструкции [28]. Однако он требует определенной интуиции и опыта для исключения опасности, связанной с наличием неустранимой погрешности решения загрубленной задачи. Представленный ниже анализ возможного происхождения погрешности должен облегчить выбор решений для расчетчика.
font-size:12.0pt'>20.2.2. Оценка погрешностей
font-size:12.0pt'>
Анализ основан на сопоставлении двух расчетных схем, одна из которых (вообще говоря, воображаемая) является подробной и детализирована в такой степени, что содержит полное описание локальной особенности. Часть именно этой схемы потом рассматривается при расчете фрагмента. Детальная расчетная схема описывается системой уравнений МКЭ в перемещениях
[K]{u} = {p}. (20.1)
Вторая расчетная схема загрублена и удобна для практического анализа. Пусть для нее выбран вектор основных неизвестных {uo}, размерность которого много меньше размерности вектора {u}, и пусть эти векторы связаны интерполяционным соотношением
{u} = [D]{uo}. (20.2)
Тогда сужение матрицы жесткости [K] на загрубленную расчетную схему выглядит как
[Ko] = [D]T[K][D], (20.3)
при этом [Ko] - матрица загрубленной расчетной схемы, для которой
легко строится решение загрубленных уравнений
[Ko]{uo} = [D]T{p} (20.4)
или может быть получена обратная матрица [Ko]-1.
Если считать, что искомое решение {u} может быть представлено через решение системы (20.4) как интерполяция (20.2) с поправкой {d}, то
{u} = [D]{uo} + {d} = [D][Ko]-1[D]T + {d} (20.5)
и подстановка (20.5) в (20.1) дает
[K]{d} = ([E] - [K][D][Ko]-1[D]T){p} = [S]{p}. (20.6)
В силу того, что
[D]T[S] = [D]T - [D]T[K][D][Ko]-1[D]T =
= [D]T
- [Ko][Ko]-1[D]T = [D]T - [D]T
= [0], (20.7)
для любого решения {x} системы разрешающих уравнений (20.1) и для любого решения {xo} системы (20.4) выполняется условие
([D]{xo})Т() = {xo}Т[D]Т[S]{x} = 0. (20.8)
Следовательно, при любой нагрузке {p} вектор правых частей (20.6) ортогонален интерполированному решению (20.2).
Сказанное означает, что при переносе решения с загрубленной расчетной модели на детальную (детализируемый фрагмент) может быть потеряна та часть, которая связана с ортогональным дополнением к подпространству интерполяции, определяемому строками матрицы [D]. Если обратиться к уравнениям (20.4), то видно, что могут быть утеряны компоненты решения для нагрузок, самоуравновешенных внутри фрагмента, поскольку такие нагрузки в загрубленной модели приводятся к нулевым.
Известно, что локально действующие самоуравновешенные нагрузки вносят в решение добавку, затухающую обычно по мере удаления от места их приложения. В этом, собственно, и состоит принципа Сен-Венана и для систем, где этот принцип соблюдается (имеются и такие системы, где он не справедлив [28, c.62]) ошибка локализации будет быстро убывать по мере удаления от источника самоуравновешенных сил. К таким источникам принадлежит и самоуравновешенная часть реакции по границам фрагмента, которая соответствует решению однородной задачи с левой частью уравнений (20.5).
Для оценки скорости убывания ошибки можно рассмотреть задачу о действии самоуравновешенной группы сил (-0,5; +1,0; -0,5), расположенных с шагом s на границе полуплоскости. Точки приложения этих сил соответствуют узлам загрубленной расчетной схемы и характерное расстояние между ними s - шагу расчетной сетки в этой схеме. В точке, расположенной под единичной силой на глубине х, напряжение на горизонтальной площадке будет равно
sxx
= -2/(px)[1 - 1/(1 + 2a2 + a4)], (20.9)
где a = s/x, а величина в квадратных скобках быстро убывает с ростом значения х и уже при х = 3s становится пренебрежимо малой.